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E Proof of Lemma (4

For a given contract ws(q), the effort choice problem of the agent can be written successively

mgx]E [u (W + wy(q))] — Cle) & maxZ/ Oou (W +ws(q)) f(g,sle)dg — C(e)

The second derivative of the agent’s objective function with respect to e is negative for any e

if and only if:
+oo B 32 ,sle . -
Z/ u (W + wy(q)) %dq < C"(e) Vee (0,€). (E.1)
s Y4

Assume that u is bounded from above, with lim, . u(w) = u™. In addition, with limited
liability, the minimum payment is ws(q) = 0; with an increasing utility function, this implies

that the minimum value of u is u(W). Therefore, for any {q, s}:

u (W +wy(q)) € [u(W),u"]

Using notations K and K defined in Equations (B.1)) and (B.2)), we can rewrite the expression
on the LHS of Equation (E.1)) as

Z/+Oo 7+ 0.0) mm{@? (q,s] }d +Z/ u (W +ws(q ))max{w,o}dq

+J§2

(E.
As established above, we have u (W + w,(q)) > u(W) for any ¢, s, and u (W + ws(q)) <u

for any ¢, s. Therefore, for any ¢, s such that % < 0 we have u (W + ws(q)) % <
u(W)%; and for any ¢,s such that % > 0 we have u (W + w(q)) % <

equilibrium output distribution. Thus, a higher scale parameter results in a lower likelihood ratio for high
output levels, which further diminishes the sensitivity of the likelihood ratio to output (and thus PPS) if the
likelihood ratio of output is convex — reinforcing the effects described in the main text. This explains why part
(iv) also requires the likelihood ratio of output to be weakly convex, whereas part (iii) does not.



+ 9% f(g,sle)
u Oe?

. Integrating and summing over ¢ and s, this implies that expression ([E.2|) is less
than K u(W) + K u™, which completes the proof. |

F Proof of Proposition

From Equation (§), since ¢; > 0, o5 > 0, and g(-) > 0, a distribution with location and
scale parameters that satisfies MLRP is such that ¢'(-) > 0 if ¢ is lower than a threshold,
and ¢'(+) < 0 if ¢ is higher than this threshold, i.e., the PDF g is single peaked — the output
corresponding to the peak is denoted by qF. For symmetric distributions, the single peak of
the distribution, which is such that ¢’ ( §5> =0, is at ¢&' = ¢, for s € {s;,5;}. With CRRA

utility, characterized by u/(w) = w™" and o'~ '(w) = w_%, provided that the FOA holds we

have:
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w,(q) = <A+“[ 1(@les) D w 1“*“[ e | = W (F.1)
8¢ /86 e(q|e s) 1

For v > 1, we use the condition for the FOA in Lemma [l For v < 1, we derive a condition
for FOA to hold in this setting. The FOA holds if:

+oo 2f(q, sle
zsj/q u (W + w,(q)) %dq < C"(e) VYec(0,e), (F.2)

where u(w) = “1’%; if v <1 and In(w) if v = 1, and w; (q) is defined by Equation (F.1)).

Part (i): Suppose that signals s; and s; differ only in their individual informativeness:

8p3i joe 09,7 /e
ge’ 6

convenience, let ¢, =

(s; and s; are associated with the same output distribution). For notational
&%éae and w,(q) = W,(¢s), which is a continuous function of ¢,. For a

given ¢, we can write:

~ - i oW, (5 B
W, (0) = ws, (g) = Wyl) — Wi(d) = / %dgb,
Holding all else constant including Lagrange multipliers (we are comparing two signal realiza-

tions, i.e. we do not change parameters of the contracting environment), for given ¢ and s such



that w,(q) > 0:

A I A
= = —_— )\ € _W
96 20\ e T e
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> 0 since ws(q) >0

For given ¢ and qg, we have

wsl(Q) - w&-(‘]O) > ij (Q) - wS]’ (QO)
q— Qo o q—q

<~ wSi(Q) — Ws; (q) - (wsi(qo) — Ws; (qo)) > 0. (F4>
Thus, for given g and ¢g such that ¢ > ¢o and w,(qy) > 0, we have:

Wg; (q) — Ws; (C]> - (wsi(qo) — Ws; (qo))
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> 2 (®0169) by MLRP, so that, for a given ¢,:

We have: ¢ > g9 which implies oo
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If v < 1, the condition in holds, and so also holds. If v < 1, does not hold,
and so does not either. If v = 1, the equation in (F.5) is satisfied as an equality so that
the expression on the right in is equal to zero.

Part (ii): Suppose that signals s; and s; differ only in their equilibrium location parameter,
with & > &;. Let w,(q) = W,(&), which is a continuous function of &, since ¢ (a1, is by

flalé,s)
assumption continuously differentiable in the equilibrium location parameter &. For a given

q, we have:

&
wa @) = e, (0) = Wil6) — Wyl6s) = [ Wl8) g

IS

3



Holding all else constant including Lagrange multipliers, for given ¢ and s such that wg(q) > 0,
we have:

OW,(§) 0 0%/ 0e %(q\é,s) g _
= =[x c —W
0¢ 0% <+“ o f(dlés)
1
_ w0 fges)| [ |99x/0e  Sales)| ) o
T J 8£{f<q!é,s) }( T T T |) 0 9
7 . g

> 0 since ws(q) >0

where:

Q{M} o ov(=8)

where G is defined in Equation (A.7). For given ¢ and ¢o, we have

wsi(Q) — wsi(QO) > W, (Q) — W, (QO) o wsi(Q) — w, <q) _ (wsi(qo) — ws, (qo)) > 0. (F8)
qd— qo q—4qo

Thus, for given g and ¢o such that ¢ > ¢o and ws(qy) > 0, we have:

wSz(q) — Ws; (q) - (wsi(qO) — W, (qo))

e dss/0e Uge.s\
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From Equation (A.6) and the definition of G(gq) in - the likelihood ratio of output is

weakly concave in ¢ if and only if G'(¢) < 0 in Wthh case 0 < G(q) < G(qo) since ¢ > qo. In

addition, ¢ > qo implies Be(f;‘ﬂe s)) > if(qz(‘)}:;) by MLRP, so that, for a weakly concave likelihood

+G(q) <)\ +p




ratio and y > 1:
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We conclude that if the likelihood ratio is nonconvex and v > 1, then holds and, using
Equation , holds too. Symmetrically, if the likelihood ratio is weakly convex (so
that G'(¢) > 0) and v < 1, then the inequality in is reversed, so that it is reversed in
condition too. Finally, if the likelihood ratio is linear (so that G'(¢) = 0) and v = 1, then
holds as an equality, and so does condition (F.8)).

Part (iii): Suppose that signals s; and s; differ only in their impact parameter, with ¢; > ¢;.
5L (ale,s)
flalé,s)
continuously differentiable in the parameter (. For a given ¢, we have:

Let wy(q) = W,((s), which is a continuous function of (, since is by assumption

“aW,(¢)

 0) =0 0) = Wal) = Wy(¢y) = [ Fprac (F.11)

As above, holding all else constant including Lagrange multipliers, for given ¢ and s such that
ws(q) > 0:

WO D
0 _ 2 <A+

S ﬁ o %_1
a¢é/ae+ae<q|e,s>]> E)

0 f(qlé, s)

~
> 0 since ws(q) > 0

where

9 {%(qlé,s)} _ 9] G 9'<q;fs> 1 @ . (F.13)

<0 for g > ¢F



Thus, at output ¢, we have:

£s

(%) <A+Mfwy&a%%@@ﬁ1>”1dg

g(q £s> 03 _ flalé, s)

Os
hd > 0 since w >0
> 0 for ¢ > ¢F +(9)
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In sum, with ¢ > qo > max{q’, ¢%, &}, we have:

ws,(q) — wsj(Q) — [ws,(q0) — ws;(q0)] = Wo(Ce) = Wo((s) — Wiy (G) — Woo (&)
_opl __g’(q;fs N el 21 (gle, )]\ "
v o g (q;&) oy flqle, s) |
d(?fﬁ 8¢s/0e  LL(qolé, s) o
- - - A € A d¢. F.14
2 (22) (+“ s " Hales) ‘ (1)
For ¢ > max{q’, ¢, &}, both —ié::’-g:)) and (/\—i—u [a¢ /0 4 86(271365)}) ! are positive and

weakly increasing in ¢ (by MLRP) if v < 1. Therefore, if v < 1, expression ([F.14) is positive.
Using (F.8), this means that, with ¢; > (;, the PPS measure M

—qo
under s;.

is higher under s; than

Part (iv): Suppose that signals s; and s; differ only in their scale parameter, with o; > o;.

of ~
Fe(qlé,s) . '
les 18 by assumption

continuously differentiable in the scale parameter o,. For a given ¢, we have:

Let ws(q) = Wy(os), which is a continuous function of oy, since

% an(U)

@) = w,(0) = Wiler) - Wil = [ F2 %o (F.15)

Holding all else constant including Lagrange multipliers, for given ¢ and s such that ws(q) > 0:
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where:

f(qlé; s)

. {%@@@} o[ a9 (5F)
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- % Lo & 1 (F.16)
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So, at output ¢:
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> 0 since ws(q) > 0

-

< 0 for ¢ > max{¢s,ql}

In sum, with ¢ > qo > max{q’, ¢*, &}
ws, (q) — Ws; (q) — (ws,(q0) — Ws; (QO)) = Wy(oi) — Wq(aj) — (Wyo (o) — qu(%’))
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For ¢ > max{q’, ¢*, &}, v 28 ) + G(q 8¢ ) g negative and weakly decreasing in ¢ if the
s s g(q §s) Os

Os

likelihood ratio of output is weakly convex (by MLRP and since then G’(¢) > 0, as per point (ii)

a¢>§; gae n 91 (qle,s)

i3
e D " is positive and weakly increasing in ¢ (by MLRP)
if v < 1. Therefore, if v < 1 and the likelihood ratio of output is weakly convex, expression
(F.17) is negative. Using inequality (F.8|), this means that, with o; > o;, the PPS measure

W is lower under s; than under s; if the likelihood ratio of output is weakly convex

and v < 1. ]

above), while </\ +p [



G The first-order approach with limited liability,
normally distributed output, and log utility

This Appendix provides sufficient conditions for the FOA in the setting considered in Sec-
tion [2.2] with limited liability, normally distributed output, and log utility. We first derive the
optimal contract and provide a sufficient condition for the FOA without an additional signal.

Given effort e € [0, €], output is determined by
q=e+te¢
where € ~ N(0,0?).

Proposition 4 Suppose C"(e) > 5 for all e € [0,€]. Let {w*(-),e*} be the optimal contract
and the effort it implements. Then, there exist A > 0 and ¢* < e* + "—;W such that

* )\ *
w'(q) = —5 -max{q¢—¢", 0}.
Moreover, ¢* = e* + %W if the IR does not bind.
For example, with a quadratic effort cost, C'(e) = ae + geQ, for a > 0 and § > 0, we have

C"(e) = f8 for all e, and the sufficient condition for the FOA is simply § > 5.

Proof of Proposition [4}
As usual, let ¢ denote the PDF of the standard normal distribution. Let W (q) = w(q)+W

denote the manager’s consumption. His IC, IR, and LL are, respectively:

e € arg max /ln(W (q) lgp <q — é) dqg — C(é),

e€lo,e] o (o}

v @) 2o (55) do - ) 20
W (q) > W Vq.

To simplify notation, we will work with the manager’s indirect utility, u(q) = In (W (q)),
so that W(q) = exp [u(q)] . This step is without loss of generality. The next step, which in



general is not without loss of generality, is to replace the IC by its FOC:

>0 if e=e
/u(q) (qage)so(qae) dg—C'(e) =0 if € (0,0 (G.1)
<0 if e=0
where we used the fact that ¢'(q) = —zp(q), so that &£ [¢ (£°)] = £ - o (££). Since

replacing the IC by its FOC is not always valid, after solving the firm’s relaxed program, we
will need to verify that its solution satisfies the IC.

Writing in terms of the manager’s indirect utility, the IR becomes

/u(q) 1, (q_€> dqg — Cle) > 0. (G.2)

o o

It is convenient to multiply both sides of LL by %gp (%) > () to rewrite it as

%so (q - 6) u(q) > %so (q - 6) In (W) vg. (G-3)

o o

The principal’s relaxed program. is

o [ (o= el 2o () o

subject to (G.1)), (G.2) and (G.3).
As in Grossman and Hart (1983), we break down this program in two parts. First, we

consider the solution of the relaxed program holding each effort e € [0, €] fixed:

r&igl/em [u(9)] %w (q ~ 6) da,

subject to (G.1)), (G.2) and (G.3).
The optimal contract to implement the lowest effort (e* = 0) pays a fixed wage. The

utility given to the manager is set at the lowest level that still satisfies both LL and IR:
u(q) = max{ln (W), C(0)} for all g. To see this, notice that a constant utility u(q) = u*

always satisfies (G.1)):
L4 (4 iy W AN oy v
/ug<p<g>dq—0(0)——a3X/qw(g)dq C'(0) = —C'(0) < 0.



Lemma 5| obtains the solution of the relaxed program for e* > 0.

Lemma 5 The optimal contract that implements e* > 0 in the relaxed program is
)‘ *
w(q):;-max{q—q , 0},
where ¢* < e* + (’;W (with equality if the IR does not bind).
Proof. The (infinite-dimensional) Lagrangian gives the following FOC:

1 —e* —e* —e* 1 —e* 1 —e*
—exp [u(q)] P (q p )Jr)\ (q e )90 (q - >+,UIR;QO (q p )Jr,LLLL(CI);SO (q . > =0,

where \ is the multiplier associated with (G.1)), and prr and p;g are the multipliers associated
with (G.2)) and (G.3]). Since the program corresponds to the minimization of a strictly convex

function subject to linear constraints, the FOC above, along with the standard complementary

slackness conditions and the constraints, are sufficient for an optimum. Substitute exp [u (¢)] =
W (q) and simplify the FOC above to obtain:

W%q)=:kq02 + prr + prs(q).

Suppose first that the IR does not bind, so that u;gr = 0. Then, the FOC becomes

q—e€*

Wig) = A + prr(q)-

o2

For W (q) > W, complementary slackness gives prr,(¢) = 0, so that:

q—e
Wi(g) =Ax ——,
o
which exceeds W if and only if
q—e* N oW «
A X T > W = ¢>e + =q".
o A
For W(q) = W, the FOC becomes:
B q— 6* _ q— 6*

W =\ o2 +HLL(C]) .'.,ULL((]):W—)\ o7

10



so that prr(q) > 0 if and only if

q—e*
0-2

W > \x — ¢<q".

Therefore, the optimal contract is

Ag—e* _ ML;*) ifa>a*
W(q):max{ (g 6),W}: o a2y
w ifq<gq"

Writing in terms of the firm’s payments, we have
_ A .
w(g) =W(q) =W = —max{g—q", 0},

where the last equality uses the definition of ¢*. The firm gives the manager an option with
strike price ¢* = e* + ‘TTZW > e* and a slope 25 chosen so that l) holds (which can be shown

to exist and be unique).
Next, suppose that the IR binds so that ;g > 0. Then, for W(q) > W , we must have

W(q) = )\q 0_2 + HIR,

so that i
W(g)>W = um>W - A\L_°

o2

For W(q) = W, we have:
_ —e*
W =1 s + pir + pre(q),

so that urr(q) > 0 if and only if

_ q— e*
prr(q) =W — A 72 —prr =0
_ q— e*
— W =X P > UIR-
Define the strike price ¢* as the solution to
_ q* _ e*
W—=2A oz HIR;

11



that is,

2 -

q*Ee*+%(W—um)§e*+7W.

Combining both conditions, we obtain
Sla—a)+W ifg=¢
w if ¢ < ¢

which again corresponds to an option with strike price ¢* and slope U—’\Q Here, A and ¢* are

chosen so that both (G.1)) and (G.2)) hold with equality. m

Lemma [0] gives an upper bound on A:

Lemma 6 Suppose e* > 0 is the effort that solves the firm’s relazed program. Then the optimal
contract 1s

A N
w(Q>:ma‘X{;<q_Q)7O}7
where 0 < A\ < v/2moe* and ¢* < e* + %V_V

Proof. From Lemma , we need to show that A < v/2woe*. Recall that the optimal contract
that implements effort e > 0 is the option:

w(q) = maX{% (¢—aq"), 0},

where ¢* < ";W + e. Since the firm’s net profits ¢ — w(q) are increasing in the strike price
q* (holding constant all other variables, including effort), its profits are bounded above by the
profits from offering the option with the highest strike price (g = ";W + e > ¢*), which equal

A [ o _\ 1 q—e
- | = —e— — — d
‘ [U2 /f’?WJre (q ‘ )‘W> UQO( g ) !

A

2

Letzzq—e—éw, sothat g =2z +e+ TW. Notethatqz";theifandonlyifzz().

Thus, we can rewrite this expression as

| W
e — [%/ Z2— <Z+—’\> dz] .
0% )y o© o

12



Moreover, since ¢(z) is decreasing in z for z > 0, it follows that

w<zt¥> <g0<§> Vz > 0.

Thus, the firm’s profits are strictly less than

e— AT gga <E> dz. (G.4)

a? Jo o

Apply the following change of variables y = 2 (so that z = oy, dz = ody) to write

/Ooogso (g) dz:a/oooyso(y)dy-

Integrating by parts gives

/OOO yp(y)dy = [—p(y)]y = »(0) = Nors

Substituting into (G.4]), the firm’s profits are strictly less than

I A

6—_._

V2T o

Since the firm can always obtain a profit of zero by paying zero wages and implementing zero

effort, we must have

1
e——-é>0 = )\ < V2moe.

V2r O

Lemma [7] provides an additional upper bound:

Lemma 7 For any ¢ € R, e € [0,¢€], 0 > 0 and A > 0, we have

/m (W+%~max{(q—q*), 0}) [(q;6>2—1] %g& <‘—’;e) dq
S/{thﬁ-max{(q—q*), 0}} [(q;6)2—1] éw(q;‘e) dg.

13



= q <, and let

Proof. For notational simplicity, let y = q*(,_ <,

D - A
g(z) =W+ — max{z—y, 0} —In <W+—-max{z—y, 0}) :
o o
Then, the inequality in Lemma [7| can be written as

/OO 9(z) (z* = 1) p(2)dz > 0.

—00

We claim that g(-) is nondecreasing. To see this, note that, for z < y, g(z) = W — In(W)

(which is constant in z). For z > y, we have

which is positive for all z > y since W > 1. Since g is nondecreasing, we have g(q) > g(—q)
for ¢ > 0 and % [9(q) — g(—¢q)] > 0. Note that, applying the change of variables 2 = —z and
using the symmetry of (2% — 1) ¢ (z) around zero, we have:

/ 9(z) (2= 1) p(2)dz = — /OOO 9(=z) (22 = 1) p(2) d=. (G.5)

—00

Therefore,

J9z) (2 =De)d: = [ g(z) (2> =1 p(2)dz+ [T g(2) (2> = 1) o (2) d2
=—fo 9(=2) (> =D () dz+ [T g(2) (2* = 1) p(2) dz
= Jo l9(2) = g(=2)] (:* = 1) p (2) dz
= fy 9(2) = 9(=2)] (z* = Vg (2)dz + [[*[9(2) = g(=2)] (2 = 1) ¢ (2) d2
> [y l9(1) = g(=D] (> = V)@ (2) dz + [ [g(1) = g(—1)] (z2 = 1) ¢ () d=
= [g(1) — g(—1)] fo (22=1)p(2)dz =0,

where the first line opens the integral between positive and negative values of z, the second line
substitutes , the third line combines the terms from the two integrals, and the fourth line
opens the integral between z < 1 and z > 1. The fifth line is the crucial step, which uses the
following two facts: (i) 2% > (<)1 for z > (<)1, and (ii) g(z) — g(—=2) is nondecreasing for all
z. Therefore, substituting g(z) — g(—z) by its upper bound where the term inside the integral

is negative, and by its lower bound where it is positive, lowers the value of the integrand. The

14



sixth line combines terms and uses the fact that

/000 (22 =1) p(2)dz = [—29(2)]5 = 0.

Lemma |8 shows that the solution of the relaxed program also solves the firm’s program if
the effort cost is sufficiently convex; that is, the FOA is valid.

Lemma 8 Suppose C"(e) > £ for all e € [0,e]. Then, the solution of the firm’s program

coincides with the solution of the relaxzed program.

Proof. The manager’s utility from choosing effort e is

Ut 0 = [ (W4 2 max(lg =0, 01) 2o () da - c

We know from previous results that 0 < A < v/2woe*. The FOA is valid if

32

82(6 g, <0

for all e € [0, €], all ¢* € R, and A € (0,+v2ncée). Differentiating gives

P = [ (W+ % max{(g—q"), 0}) 12 [p(L2)] dg — C"(e) @)
= [ (W42 max{(g-q), 0) 2 (59)" 1] e (5)dg—C"(e) "
where the second line uses the fact that % e (=2)] =% [(%)2 — 1} ¢ (). Note that

SIn (W + 24 -max{(qg—q"), 0}) [ %6)2—1] 1o (£2) dg

< SV 2 max{l—q), 0} {(qf:“—l]im
= & [max{(g—g"), O [(52)" 1] 2o (%) dg
= &[T (q—Q)[(q 6)2—1%@0(% dg,

where the inequality uses Lemma El, the third line follows from [ [(‘10;6)2 - 1} Lo (=) dg=0
(a standard normal variable has variance 1), and the fourth line opens the max operator.
Substituting in the expression from (G.6|), we obtain the following sufficient condition for the

15



validity of the FOA:

S - [(q‘e)2—1] Lo ()= (@7)

o o

for all e € [0,€], ¢* € R, and A € (0, V27oe).

Let £(g") = fq(10 (9-¢) [(?)2 N 1} %90 (?) dg. We claim that ¢ (q*){ z }O —

<
q* { } e. Differentiating yields:
>

Note that

[ (5 (5] --2e (59)-(59) 2o (5) - [ (52 1] &

where the last equality uses the fact that ¢'(¢) = —qp(q). Therefore,

1) ] 2o ()= - (1) o (15).

Substituting back into (G.8)) gives:

o= () (T o= o{ D)

Therefore, £(+) is maximized at ¢* = e, so that, by condition (G.7)), it suffices to show that

2 e <o) (G9)

ol

Evaluating £ at e gives:
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Performing the change of variables z = ==, we obtain

5(6):/:0 (q;€> [(q;e)2—1] gp(q;e> dq:a/oooz(zQ—l)(p(z)dz. (G.10)

Integrating by parts gives

/ D2 - 1) p(2)ds = —2p(z) + / 2 (2)dz,

where we let (22 — 1) ¢ (2)dz = dv so that v = —zp (2), and we let u = z, so that du = dz.

/0002(22—1)g0(2)d2::/OOOZQD(Z)CZZ.

Using 4L [—¢(z)] = z¢ () , we have

Therefore

|2 =00 = el = o) = .

Substituting into (G.10]), yields

£(e) = o

Substituting into (G.9)), we obtain the following sufficient condition:

A
<C”€,
Nor (¢)

which is true for all e € [0,¢] and all A € (0,v/2nc€) if and only if
1 é _
C"(e) > — Vee[0,e].
o

[ ]
Proposition [p| provides a sufficient condition for the FOA with an additional performance

signal, for a subset of signal distributions.

Proposition 5 We consider the same setting as in Proposition [3, and a signal distribution
such that: (i) hi(e) < 0 for all s; (ii) ¢7 linear in e for all s; (i) h,, (e) < hg,(e), b, (e) <
by, (e), and o4, > oy, for any si, sy with % >0 > % and any e € [0,¢€]. Then the FOA is

o X, S (e))? )
valid if C"(e) > >, Pshs (6) —Z 45— for all e € [0, ¢€].

S og
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Proof of Proposition [5f Let ¢ denote the PDF of the standard normal distribution. Let

W,(q) :== W + w,(q) denote the manager’s consumption (i.e., the manager’s initial wealth W

)

plus his pay). His IC, IR, and LL are, respectively:
eEargmaxZ¢S/ (@) — 1
é€(0,¢] Og
1 (q—hs(e)
S In (Wi — dg—C
St v o) agp( Rl dg — et
W, (q) > W Vg, s.

To simplify notation, we will work with the manager’s indirect utility, us(q) := In (W (q)),
so that Ws(q) = explus(q)]. This step is without loss of generality. The next step, which in
general is not without loss of generality, is to replace the IC by its FOC:

e @ (1= h @Y ) T T
Zebe/us(q) g so( . ) g—C'(e) =0 if ec(0,¢) . (G.11)
° ’ <0 if e=0

Since replacing the IC by its FOC is not always valid, after solving the firm’s relaxed program,
we will need to verify that its solution satisfies the IC. It is convenient to multiply both sides
of LL by = .4 (q ha(e ) @2 > 0, rewriting it as:

S (D) g2 Lo (LD o () v (G.12)

Os Os Os Os

The principal’s relaxed program is

Ry IR Cs s

Vta,s.e Os

subject to (CT), (E12), and
1 — h, (e
Sot [t o (D) dg - ) 2 0 (@13

s

As in Grossman and Hart (1983), we break down this program in two parts. First, we consider

18



the solution of the relaxed program holding each effort e € [0, €] fixed:

Iil(i_?ZQbi/exp [us(9)] in (%(e)) dg

s

subject to (G.11)), (G.12), and (G.13).

The optimal contract to implement the lowest effort (e* = 0) pays a fixed wage. The
utility given to the manager is set at the lowest level that still satisfies both the LL and IR:
u,(g) = max{Iln (W), C(0)} for all ¢, s.

Lemma [0 obtains the solution of the relaxed program for e* > 0.

Lemma 9 The optimal contract that implements e* > 0 in the relaxed program is

A .
ws(Q) = ; -max{q— qs?o}a

where ¢ < Ug% + hg (e*) (with equality if the IR does not bind).

Proof. The (infinite-dimensional) Lagrangian associated with this program is

;qﬁi/exp [s(q)] Uicp <%(6)) dg

S

A 1> ¢Z/us ()= Zz;,(e*)so (q — Z (e*)) dg — C'(e")
+irr Zcbi/us (4) Uisso <%(e>) dg — C(e)
+rr(g, S)Uissa (%@)) Pzus (q) -

The FOC is

—exp i) - (L) g AL (12

S S 08

S S US

1 — h, (e* 1 — h, (e*
+M1RU—S<P (qa—(e)) ®: + prr(q, 3)0—90 (q—@)) ¢; =0,

where A is the multiplier associated with (G.11]), and purr, and urg are the multipliers associated
with (G.12)) and (G.13)). Since the program corresponds to the minimization of a strictly convex
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function subject to linear constraints, the FOC above, along with the standard complementary
slackness conditions and the constraints, are sufficient for an optimum. Substitute exp [us (q)] =
Wi(q) and simplify the FOC above to obtain:

q— hg(e")

2
05

Ws(q) = A + prr + prr(q, s).

By complementary slackness, we must have p;r > 0 (with puyg = 0 if IR does not bind).
Similarly, rr(q) > 0 with equality if W,(¢) > W. Thus, for W,(¢q) > W, we must have

hs (e*)

q—Ns T
W(q) = /\T +prr > W,
which can be rearranged as
W —
q > 03# + hs (%) =: q}.

For W,(q) = W, we must have

- — h, (e
pro(q,s) =W — )\qg—g()

—pr >0 <= q¢<gq;.
Combining both conditions, we obtain

— hs(e* - - A .
Wilq) = maX{Aq—Q() +qu,W} =W+ — -max{g—¢0}.

Thus,
A )
ws(q) = — - max{g —q;,0}.
Finally, since u;g > 0,
W — W
q = 0?% + hs (") < hg (") + 057,

with equality if IR does not bind (in which case, we have py;r = 0). =

Lemma (10| gives an upper bound on A:

Lemma 10 Suppose e* > 0 s the effort that solves the firm’s relazed program. Then the
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optimal contract is

ws(q) = maX{% (¢—a5), 0},

where 0 < A <

—\/ﬁzs¢§:*hs(e*) and q& < hg (e*) + afV;V.

s 2
Is

\/ﬂz¢h

E] Q

Proof. From Lemma |10, we need to show that A\ < . Recall that the optimal

contract that implements effort e* > 0 is the option:
A *
w3<q>:max _Q(q_QS)7 0 )
US

where ¢& < hg(e*) + 03%. Since the firm’s net profits ¢ — w(q) are increasing in the strike
price ¢¢ (holding constant all other variables, including effort), its profits are bounded above
by the profits from offering the option with the highest strike price for each signal s (g =
he () + a2% > ¢¥), which equal

> oehs () = 30k [ Lo (0 tter = o) o (2 )

S)\,s,othai;q-z%—h( )—1—02W Note that ¢ > h, (e*)+ Ug%

if and only if z > 0. Thus, we can rewrite this expression as

DU R -
S*h/s * - 8* T a - —A d .
S oiche () = S [U/O Z@”( . ) ]

s

For each s, let z = ¢—hgs (e*) —0o

Moreover, since ¢(z) is decreasing in z for z > 0, it follows that, for any s,

2+ o2
gp(ﬁ) <<,0(i) Vz > 0.
Os Os

Thus, the firm’s profits are strictly less than

Z%h Zgbe* 02/ ¥ <;) dz. (G.14)
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z

Apply the following change of variables y = = (so that z = o4y, dz = osdy) to write

/ —p (—) dz = as/ yo (y) dy.
0 Os Os 0

Integrating by parts gives

/Ooo yo(y)dy = [—o(y)]y = »(0) = Nirs

Substituting into (G.14]), the firm’s profits are strictly less than

s * s 1
;(ﬁe*hs (6 ) — ;Qﬁe*\/?

Since the firm can always obtain a profit of zero by paying zero wages and implementing zero
effort, we must have

)\ S* 2 S *
Z@*hs(e*)—ﬁzqz >0 <= A< vy, q:* (<)

s o5

Lemma (11| provides an additional upper bound:

Lemma 11 For any ¢ € RVs, e € [0,¢€], e* € [0,€], o5 > 0Vs, and A > 0, we have

S [ (1 Gy macta i 07) 04000 [M - i] e (D) 4y

5 oy o; | os s
2
s o [(@—hs(e))” 111 (q—h(e)
< qu /{W+— max {q — ¢y, 0}]( s(€)) [0—;*_0_3 0—590 0—5 dq.
Proof. For notational simplicity, for each s, let y, := qz_o—h:(e), apply the change of variables
2, 1= 4 (e , and let

_ A - A
9s(2) ::W—l—a—-max{z—ys, 0} —In (W—I—J—-max{z—ys, 0})

S S
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Then, the inequality in Lemma [11] can be written as

0-3

Z ¢s( h(e))? /OO 9s(2) (z* = 1) p(2)dz > 0. (G.15)

s

The terms ¢, o5, and (R, (e))? are positive, so it remains to prove that this integral is positive.
We claim that, for each s, gs(-) is nondecreasing. To see this, notice that, for z, < ys ,

gs(2) = W — In(W) (which is constant in z,). For z, > y,, we have

/()_i W—l—i—%(z—y)
"=\ Wiztoy )

which is positive for all z, > y, since W > 1. Since g is nondecreasing, we have g,(q) > gs(—q)
for ¢ > 0 and diq [95(q) — gs(—q)] > 0. Note that, applying the change of variables Z = —z and

using the symmetry of (2% — 1) ¢ (2) around zero, we have:
0 0
/ 9s(2) (22 = 1) p(2)dz = —/ gs(—2) (22 = 1) p(2) d=. (G.16)
—00 0

Therefore,

(2)dz+ [ gs(2) (2> = 1) @ (2) dz
Yo (2)dz+ [7 gs(2) (22 = 1) ¢ (2) dz
(2> =1 p(2)dz

J9:2) (22 =)o (2)dz = ["_g.(2) (2% — 1)90
= _fooo 98(_2 22 -1
= [ [9s(2) — gs(—2)]

=y [gs(Z) —9s(=2)] (22 = D (2) dz + [[7 [95(2) — gs(=2)] (2* = 1) p (2) d=
> [y o1 ( DI(z* =1 ¢ ( )dz+ [[7 [g5(1) — gs(—=1)] (z* = 1) ¢ (2) d2

= [g5(1) — fo (2 =1 (2)dz =0,

where the first line opens the integral between positive and negative values of z, the second line
substitutes , the third line combines the terms from the two integrals, and the fourth
line opens the integral between z < 1 and z > 1. The fifth line is the crucial step, which uses
the following two facts: (i) 22 > (<)1 for z > (<)1, and (ii) gs(z) — gs(—2) is nondecreasing
for all z. Therefore, substituting gs(z) — gs(—z) by its upper bound where the term inside
the integral is negative, and by its lower bound where it is positive, lowers the value of the

integrand. The sixth line combines terms and uses the fact that

/Ow(f—l)wz)dz —2p()| = 0.
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Lemma |12 shows that the solution of the relaxed program also solves the firm’s program if
the effort cost is sufficiently convex; that is, the FOA is valid.

>, ¢§ h! <e>>2

Lemma 12 Suppose C"(e) > > ¢S.hs (€) for all e € [0,¢€]. Then, the solution of

the firm’s program coincides with the solution of the relaxed program.

Proof. The manager’s utility from choosing effort e is

e {g:h N : Z¢s/ ( +i max {q — ¢, 0})%¢(%‘S(e)>dq—o(e).

5 S

We know from previous results that 0 < A < m The FOA is valid if

So‘s

U
Jez (e;{gi},A) <0

V2 3, ¢5.hs ()
¢S

for all e € [0,€], all ¢* € R, and \ € (0, e

) . Differentiating gives

=5, S0 (W 2 - max{g — g2, 0}) 245 ot (222 | dg — C"(¢)
=3, [ In (W + 2% max{g—q, 0}) =4 [‘%s@ ) 4 gl ( (e)ﬂ dg — C"(e)
=3, /In (W + U% -max {q — ¢%, 0}> Ui {%gp (%&) + Qdi*f%go (q_g:(e)>
+os L (%”) } dg — C"(e)
=5, 5% fm (W + 4 -maX{q — g5, 0}) Lo (9 dg
2y, el [y (W + 2 max {g — ¢, 0}> ehele) <q’h3(e)) dg

s de cr Os

+3°, szln <W+ max{q—q;f, O})UL
[0 [S=259 1] 4 he) (g — b ()] o (222 dg - ()

where the last equality uses the fact that
i ()] = 2 [W 2 (W - 1) +H(e) (1= h. <e>>] o (152,
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First, with ¢¢ linear in e (assumption (ii) in Proposition ) Lo — 0Vs, so that the first

) d de2
term on the RHS of (G.17) is zero.
Second, the second term on the RHS of (G.17)) can be rewritten as:

223 d;: 0'2 fln <W+ max{q—q:’ 0}) q_gz(e)SO(q—Zz(e))dq
=23, %D {f"s In (17) 222005 (1019) g

+ [ In (W +5 (- qs)) ehee) (q hele ) dq} (G.18)

where ¢} = 03% + hs (e*). For a given e, letting (, := q_gﬁ and ¢} := qz_a—hs(e), we have:

/m <W+ A max{g— ¢, 0}) g=h(e) 1 (—q —hs (6)) dg

o? O O

= (s 2 e o) G

Os

& o0
= [ @i [Tn (W 2e-o)eodz G

—00 s

where the inequality follows from W > 1 and the symmetry of the normal distribution. This
shows that, in Equation (G.18), the term in brackets is increasing in hs(e) and in &/ (), and
decreasing in oy, all else equal. Note that, as ) ¢ = 1Ve, we have ) = ¢8 = 0, which implies

In sum, with assumption (iii), the expression in ((G.18) is negative.

Third, we now show that the third term on the RHS of (G.17) is negative. With ¢7 > 0
and os > 0 for all s, with hZ(e) < 0 for all s (assumption (i)), and with Equation (G.19)), we
have

S f—fh;’(e) /m (v‘v + % ‘max {q - ¢, 0}) a=hs(e) 1 (@) dg < 0. (G.20)

S O-S O-S

25



Moreover:

g i (W4 2 max {g —q;. 0}) [(())? |95 — 1] - hi(e) (g — b (0))] 2 ()
S G I (W + 2 max{g — i, 0}) (Wy(e))? [Uf — 1] Ly (2] g
+>, ﬁ—fh’s’(e)fln (W—i—%-max{q—q:, 0}) qigz(e)iﬁo g=hs( e)>dq

< ZS%(M( ))2I(W+A.max{q qz, O}) [—5(6”2—1 igp (J_(e)> dg

= Y AG (b)) - [max{q — g, 0} | U 1] Lo (0D ) dg

— S AG(Re >> (g a0 [0 1) Lo () gy,

where the first equality separates the sum into two components, the inequality that follows
uses the result from Lemma [11] and Equation (G.20)), the next equality follows from

f[y )

(a standard normal variable has variance 1), and the last equality opens the max operator.
Substituting in the expression from (G.17)), we obtain the following sufficient condition for the
validity of the FOA:

AL [T [(—q SO 1] e ) IO CE

*
5 s

for all e € [0,&], ¢* € R, and A € (o, M) Let

S og

&(gy) = /OO (¢ —q5) [(%03)) - 1] Uisso (%(e)) dg.
£;<q:>{ j }o = q:{ - }hs (©). (G22)
Differentiating yields

&(q;) = — /qoo [(%S(e)y - 1] Uisso (%s(e)) dg. (G.23)

s

We claim that
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Note that
d q_hs(€> q_hs(e) _ 1 q_hs(e) q_hs<e) 1 / q_hs(e)
da |~ ¥ = T - — P\
q Os Og Os Og Og O O
2
_ [(q—hs<e)) _1] 1, (q—hs(@)’
Os Os o

where the last equality uses the fact that ¢'(q) = —qp(q). Therefore,

— hy (e 2 1 — hy (€ — hy (e — hy (e

/[(q_w> _1] Lo (1m0 gy (12 120) (1= e),
Os Os Os Os Os

Substituting back into (G.23|) gives

5;<q:>:—(q:‘0—’f(e))so(q:‘a—’f(e)){ - }o = q:{ ) }hs<e>.

Therefore, £(-) is maximized at ¢& = hs(e), so that, by condition (G.21)), it suffices to show
that

AT % 0 ) lhufe)) < 7 (G.24)
for all e € [0,€] and A € (0, %) Evaluating &, at hs(e) gives:
S = [(q_f: <e>>2_1] NP
Performing the change of variables z, = %Z(e), we obtain
&s(hs(e)) = o, /000 2 (22 = 1) ¢(2)d=. (G.25)

Integrating by parts gives

/z (22 = 1) p(2)dz = —2%p(2) + /zgo (2)dz,

where we let (22 — 1) ¢ (2)dz = dv so that v = —z¢ (z), and we let u = 2, so that du = dz.
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Therefore

/OMZ(ZQ—l)gO(Z)dZ:/OOOZQD(Z)CZZ.

Using 4 [—¢(z)] = z¢ () , we have

o 1
2 (22 -1 2)dz = [—o(2)]T™ = p(0) = —.
|2 =0 e = o™ = pl0) = o=
Substituting into (G.25)), yields
Os

s(hs(e)) = .
&(hu(e) = =
Substituting into (G.24]), we obtain the following sufficient condition:

=2 L) <o),

which is true for all e € [0, and all A € (o, M) if

s os

2 (h, (e))?
quj*hs (€) 2 (¢>_( ) < (C"(e) Veel0,e].

S Os
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